701 research outputs found

    Children’s Moral and Affective Judgments Regarding Provocation and Retaliation

    Get PDF
    Moral judgments, attributions of emotion, and their associations were examined in hypothetical, prototypical situations and situations of provocation and peer retaliation. Eighty-one school-age children, 46 kindergartners and first graders and 35 2nd–4th graders, judged prototypical and provoked moral transgressions (hitting and teasing). Children judged hypothetical moral transgressions to be more serious and more deserving of punishment, and they reasoned more about concerns with others’ welfare, for prototypical than for provoked transgressions and when retaliation involved hitting rather than teasing. Children’s moral condemnation of provocation increased with age. Across conditions, children attributed greater happiness to transgressors than to victims; “happy victimizer” responses decreased with age for prototypical but not for provoked transgressions. Moreover, retaliators were seen as both happier and angrier than their victims. Anger increased and sadness decreased with age, but children’s emotion attributions were not associated with their moral judgments about either prototypical or provoked transgressions

    A Mathematical Model For Evaluating Energy Consumptions In Life Cycle Assessment.

    Get PDF
    This paper takes up the ecobalance topic giving prominence to a calculation procedure of necessary energy consumptions for the production of a product in the different phases of a whole life cycle. Are used to identify all stages of the life cycle are determined and simplified formulas for the calculation of specific energy consumption. Is also examined a case where the components of the final product are up to 8. The model is valid for any type of product and through operations research (ie, placing constraints on the variables) you could get to optimal solutions minimizing the objective function

    Water desalination by capacitive electrodialysis: Experiments and modelling

    Get PDF
    Electrodialysis-related technologies keep spreading in multiple fields, among which water desalination still plays a major role. A new technology that has not yet been thoroughly investigated is capacitive electrodialysis (CED), which couples the standard ED with capacitive electrodes. CED has a number of advantages such as removal of toxic products and system simplification. Little mention is made of this technology in the literature and, to the best of our knowledge, no modelling works have ever been presented. In this work, the CED process has been studied through experiments and modelling. A CED model is presented for the first time. With a simple calibration based on macroscopic membrane properties and the characterisation of electrode behaviour, the model is able to simulate the dynamics of simple as well as more complex layouts. An original experimental characterisation of electrodes is presented, showing how the collected data can be implemented into the model. After a successful validation with experimental data, dynamic simulations of a single pass CED unit have been performed with the aim of assessing the effect of different capacitive electrode properties on process performance. Results show how the impact of these properties is different depending on the number of cell pairs

    Real-time optical manipulation of cardiac conduction in intact hearts

    Get PDF
    Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all‐optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide‐field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free‐run mode with submillisecond temporal resolution or in a closed‐loop fashion: a tailored hardware and software platform allowed real‐time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real‐time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real‐time resynchronization therapy and cardiac defibrillation. Furthermore, the closed‐loop approach was applied to simulate a re‐entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart

    Clinical relevance of thymidylate syntetase expression in the signet ring cell histotype component of colorectal carcinoma

    Get PDF
    Thymidylate Synthase (TS) is the key enzyme for DNA synthesis pathways and is inhibited by 5-fluorouracil (5FU). The aim of this work was to study TS expression and the proliferation rate in the different histological types of colorectal carcinoma (CRC). 50 patients with CRC were included in this study and evaluated immunohistochemically using the monoclonal antibodies, TS106 and Ki67. 20 tumours were of the intestinal type, 15 cases were signet ring cell carcinoma (SRCCs) and 15 cases were "mixed-type", with at least two different histological components. Intestinal and mucinous histotypes were positive for TS and Ki67, while "signet ring cell" samples were negative or showed only weak and focal positivity for both the TS and Ki67 antibodies. Our results show that signet ring cells (that are also often present in intestinal and mucinous carcinomas), are in the post-mitotic phase of the cell cycle and show a low proliferation index and TS expression. As TS is the key enzyme for DNA synthesis pathways and is inhibited by 5-fluorouracil (5FU), we can hypothesise that TS expression levels in the different histotypes of CRC could affect the potential responsiveness of these tumours to fluoropyrimidine chemotherapy, with a low efficacy being expected in signet ring cell areas

    Label-free electrochemical immunosensor as a reliable point-of-care device for the detection of Interleukin-6 in serum samples from patients with psoriasis

    Get PDF
    interleukin-6 (IL-6) plays a crucial role in autoimmunity and chronic inflammation. this study aims to develop a low-cost, simple-to-manufacture, and user-friendly label-free electrochemical point-of-care device for the rapid detection of IL-6 in patients with psoriasis. precisely, a sandwich-based format immunosensor was developed using two primary antibodies (mAb-IL6 clone-5 and clone-7) and screen-printed electrodes modified with an inexpensive recycling electrochemical enhancing material, called biochar. mAb-IL6 clone-5 was used as a covalently immobilized capture bioreceptor on modified electrodes, and mAb-IL6 clone-7 was used to recognize the immunocomplex (Anti-IL6 clone-5 and IL-6) and form the sandwich. cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to conduct electrochemical characterization of the layer-by-layer assembly of the immunosensor, while square wave voltammetry (SWV) was used to perform the sensing. the developed immunosensor demonstrated robust analytical performance in buffer solution, with a wide linear range (LR) by varying from 2 to 250 pg/mL, a good limit of detection (LOD) of 0.78 pg/mL and reproducibility (RSD<7%). In addition, a spectrophotometric ELISA kit was employed to validate the results obtained with the label-free device by analyzing twenty-five serum samples from control and patients affected by psoriasis. a strong correlation in terms of pg/mL concentration of IL-6 was found comparing the two methods, with the advantage for our label-free biosensor of an ease use and a quicker detection time. based on IL-6 levels, the proposed immunosensor is a dependable, non-invasive screening device capable of predicting disease onset, progression, and treatment efficacy

    Evaluation of seismic demand for substandard reinforced concrete structures

    Get PDF
    Background: Reinforced Concrete (RC) buildings with no seismic design exhibit degrading behaviour under severe seismic loading due to non-ductile brittle failure modes. The seismic performance of such substandard structures can be predicted using existing capacity demand diagram methods through the idealization of the non-linear capacity curve of the degrading system, and its comparison with a reduced earthquake demand spectrum. Objective: Modern non-linear static methods for derivation of capacity curves incorporate idealization assumptions that are too simplistic and do not apply for sub-standard buildings. The conventional idealisation procedures cannot maintain the true strength degradation behaviour of such structures in the post-peak part, and thus may lead to significant errors in seismic performance prediction especially in the cases of brittle failure modes dominating the response. Method: In order to increase the accuracy of the prediction, an alternative idealisation procedure using equivalent elastic perfectly plastic systems is proposed herein that can be used in conjunction with any capacity demand diagram method. Results: Moreover, the performance of this improved equivalent linearization procedure in predicting the response of an RC frame is assessed herein. Conclusion: This improved idealization procedure has been proven to reduce the error in the seismic performance prediction as compared to seismic shaking table test results [1] and will be further investigated probabilistically herein

    Historical silk: a novel method to evaluate degumming with non-invasive infrared spectroscopy and spectral deconvolution

    Get PDF
    : To correctly manage a collection of historical silks, it is important to detect if the yarn has been originally subjected to degumming. This process is generally applied to eliminate sericin; the obtained fiber is named soft silk, in contrast with hard silk which is unprocessed. The distinction between hard and soft silk gives both historical information and useful indications for informed conservation. With this aim, 32 samples of silk textiles from traditional Japanese samurai armors (15th-20th century) were characterized in a non-invasive way. ATR-FTIR spectroscopy has been previously used to detect hard silk, but data interpretation is challenging. To overcome this difficulty, an innovative analytical protocol based on external reflection FTIR (ER-FTIR) spectroscopy was employed, coupled with spectral deconvolution and multivariate data analysis. The ER-FTIR technique is rapid, portable, and widely employed in the cultural heritage field, but rarely applied to the study of textiles. The ER-FTIR band assignment for silk was discussed for the first time. Then, the evaluation of the OH stretching signals allowed for a reliable distinction between hard and soft silk. Such an innovative point of view, which exploits a "weakness" of FTIR spectroscopy-the strong absorption from water molecules-to indirectly obtain the results, can have industrial applications too

    Are Markers of Systemic Inflammatory Response Useful in the Management of Patients With Neuroendocrine Neoplasms?

    Get PDF
    Given the increasing incidence of neuroendocrine neoplasms (NENs) over the past few decades, a more comprehensive knowledge of their pathophysiological bases and the identification of innovative NEN biomarkers represents an urgent unmet need. There is still little advance in the early diagnosis and management of these tumors, due to the lack of sensible and specific markers with prognostic value and ability to early detect the response to treatment. Chronic systemic inflammation is a predisposing factor for multiple cancer hallmarks, as cancer proliferation, progression and immune-evading. Therefore, the relevance of inflammatory biomarkers has been identified as critical in several types of tumours, including NENs. A bidirectional relationship between chronic inflammation and development of NENs has been reported. Neuroendocrine cells can be over-stimulated by chronic inflammation, leading to hyperplasia and neoplastic transformation. As the modulation of inflammatory response represents a therapeutic target, inflammatory markers could represent a promising new key tool to be applied in the diagnosis, the prediction of response to treatment and also as prognostic biomarkers in NENs field. The present review provides an overview of the pre-clinical and clinical data relating the potentially usefulness of circulating inflammatory markers: neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), cytokines and tissue inflammatory markers (PD-1/PD-L1), in the management of NENs. (1) NLR and PLR have both demonstrated to be promising and simple to acquire biomarkers in patients with advanced cancer, including NEN. To date, in the context of NENs, the prognostic role of NLR and PLR has been confirmed in 15 and 4 studies, respectively. However, the threshold value, both for NLR and PLR, still remains not defined. (2) Cytokines seem to play a central role in NENs tumorigenesis. In particular, IL-8 levels seems to be a good predictive marker of response to anti-angiogenic treatments. (3) PD-1 and PD-L1 expression on tumour cells and on TILs, have demonstrated to be promising predictive and prognostic biomarkers in NENs. Unfortunately, these two markers have not been validated so far and further studies are needed to establish their indications and utility
    • 

    corecore